Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
PeerJ ; 12: e17282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666083

RESUMO

This study investigated the potential of using steam-exploded oil palm empty fruit bunches (EFB) as a renewable feedstock for producing fumaric acid (FA), a food additive widely used for flavor and preservation, through a separate hydrolysis and fermentation process using the fungal isolate K20. The efficiency of FA production by free and immobilized cells was compared. The maximum FA concentration (3.25 g/L), with 0.034 g/L/h productivity, was observed after incubation with the free cells for 96 h. Furthermore, the production was scaled up in a 3-L air-lift fermenter using oil palm EFB-derived glucose as the substrate. The FA concentration, yield, and productivity from 100 g/L initial oil palm EFB-derived glucose were 44 g/L, 0.39 g/g, and 0.41 g/L/h, respectively. The potential for scaling up the fermentation process indicates favorable results, which could have significant implications for industrial applications.


Assuntos
Células Imobilizadas , Fermentação , Fumaratos , Fumaratos/metabolismo , Células Imobilizadas/metabolismo , Óleo de Palmeira , Frutas/microbiologia , Frutas/química , Arecaceae/microbiologia , Arecaceae/química , Óleos de Plantas/metabolismo , Hidrólise , Glucose/metabolismo
2.
Int J Biol Macromol ; 261(Pt 2): 129852, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307432

RESUMO

The red palm weevil (RPW), Rhynchophorus ferrugineus (Curculionidae: Coleoptera) is a highly destructive global pest of coconut trees, with a preference for laying its eggs on new leaves. Females can identify where to lay eggs by using their sense of smell to detect specific odorants found in new leaves. In this study, we focused on the two odorants commonly found in new leaves by GC-MS: trans, trans-2,4-nonadienal and trans-2-nonenal. Our behavioral assays demonstrated a significant attraction of females to both of these odorants, with their electrophysiological responses being dose-dependent. Furthermore, we examined the expression patterns induced by these odorants in eleven RferOBP genes. Among them, RferOBP3 and RferOBP1768 exhibited the most significant and simultaneous upregulation. To further understand the role of these two genes, we conducted experiments with females injected with OBP-dsRNA. This resulted in a significant decrease in the expression of RferOBP3 and RferOBP1768, as well as impaired the perception of the two odorants. A fluorescence competitive binding assay also showed that both RferOBPs strongly bound to the odorants. Additionally, sequence analysis revealed that these two RferOBPs belong to the Minus-C family and possess four conserved cysteines. Molecular docking simulations showed strong interactions between these two RferOBPs and the odorant molecules. Overall, our findings highlight the crucial role of RferOBP3 and RferOBP1768 in the olfactory perception of the key odorants in coconut palm new leaves. This knowledge significantly improves our understanding of how RPW females locate sites for oviposition and lays the foundation for future research on the development of environmentally friendly pest attractants.


Assuntos
Arecaceae , Gorgulhos , Animais , Feminino , Cocos/genética , Odorantes , Gorgulhos/genética , Simulação de Acoplamento Molecular , Arecaceae/química
3.
J Fish Dis ; 47(6): e13924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38300462

RESUMO

Vibrio harveyi and Vibrio parahaemolyticus are species of the Vibrio genus that often cause disease and mass mortality in crustaceans. If not handled quickly and appropriately, these diseases can cause considerable losses to farmers. Therefore, it is necessary to find a solution with safe and environmentally friendly disease prevention technology using natural ingredients, among others from plants, namely oil palm. Some parts of oil palm, namely leaves, fronds, fibres and oil palm pulp, which are palm waste, contain antibacterial compounds. This study aimed to assess the antibacterial activity of palm waste extracts, namely pulp, leaves, fronds and fibres using n-hexane, ethyl acetate, chloroform, ethanol and water maceration solvents against pathogenic bacteria V. harveyi and V. parahaemolyticus, and identify active compounds contained in palm waste. The results of the research are expected to produce innovative and sustainable solutions to control diseases in shrimp farming, contribute to the development of a sustainable fishing industry and open up the potential for utilizing palm waste as a value-added resource in the field of aquatic health. The results of observations on antibacterial activity tests and identifying the content of palm waste extract compounds were analysed descriptively displayed in the form of figures, tables and graphs. The results showed that palm waste extracts (pulp, leaves, fronds and fibres) with ethyl acetate and ethanol maceration solvents had very strong antibacterial potential, namely 20.14 ± 0.31 mm-25.52 ± 1.42 mm on V. harveyi bacteria and 20.41 ± 0.55 mm-25.00 ± 0.51 mm on V. parahaemolyticus bacteria. Palm extracts with n-hexane (>20 mm) and chloroform solvents generally have strong category antibacterial potential (10-20 mm), and palm extracts in water solvents have medium category potential (5-10 mm) against V. harveyi and V. parahemolyticus bacteria. The results of phytochemical tests on palm waste extracts with ethyl acetate and ethanol maceration solvents contain bioactive compounds of flavonoids, saponins, polyphenols and alkaloid tannins, steroids and triterpenoids. Palm extracts with n-hexane and chloroform solvents generally contain saponins, alkaloids, steroids and triterpenoids, while palm waste extracts with water solvents contain saponins.


Assuntos
Antibacterianos , Extratos Vegetais , Vibrio parahaemolyticus , Vibrio , Antibacterianos/farmacologia , Antibacterianos/química , Vibrio/efeitos dos fármacos , Vibrio parahaemolyticus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Arecaceae/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise
4.
Braz J Biol ; 83: e276545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970907

RESUMO

The bacaba (Oenocarpus bacaba Mart.) peel corresponds to 15% of the whole fruit and is rich in antioxidants with potential application in product development. In nanotechnology, emulsified formulations such as nanoemulsions stand out for providing modified release and improving the bioavailability of conveyed substances. The aim of this work was to develop nanoemulsified systems from baru oil containing hydroalcoholic extract from the bacaba peel, evaluate their stability and antioxidant potential. After the HLB (Hydrophilic-lipophilic balance) determination of the baru oil, thirty-two formulations were developed, varying the proportions of surfactants, aqueous phase, and baru oil. Of those 32, 16 formed emulsified systems, and the ones with a higher amount of oil (20%) were incorporated with the BPE. The systems were submitted to stability studies to verify their viability. After that, several tests were performed, such as rheological characteristics, hydrodynamic diameter of the droplets, polydispersion index, zeta potential, and antioxidant potential by DPPH and ABTS+ radical scavenging methods. After the studies, two samples remained stable and presented a non-Newtonian pseudoplastic profile with thixotropy, hydrodynamic diameter of less than 200 nm, monodispersity, and negative zeta potential. The BPE showed antioxidant potential, with superior activity when incorporated into the nanoemulsified system. A strong negative correlation was found between the two antioxidant methods, where both demonstrated the same profile of potential antioxidant activity for the extract and formulations. The studied formulation showed that the use of BPE is a viable alternative for the development of new products based on sustainable technologies.


Assuntos
Antioxidantes , Arecaceae , Antioxidantes/química , Frutas/química , Arecaceae/química , Extratos Vegetais/química
5.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569487

RESUMO

This study aimed to evaluate Attalea funifera seed oil with or without resveratrol entrapped in organogel nanoparticles in vitro against A375 human melanoma tumor cells. Organogel nanoparticles with seed oil (SON) or with resveratrol entrapped in the seed oil (RSON) formed functional organogel nanoparticles that showed a particle size <100 nm, polydispersity index <0.3, negative zeta potential, and maintenance of electrical conductivity. The resveratrol entrapment efficiency in RSON was 99 ± 1%. The seed oil and SON showed no cytotoxicity against human non-tumor cells or tumor cells. Resveratrol at 50 µg/mL was cytotoxic for non-tumor cells, and was cytotoxic for tumor cells at 25 µg/mL. Resveratrol entrapped in RSON showed a decrease in cytotoxicity against non-tumor cells and cytotoxic against tumor cells at 50 µg/mL. Thus, SON is a potential new platform for the delivery of resveratrol with selective cytotoxic activity in the treatment of melanoma.


Assuntos
Antineoplásicos , Arecaceae , Melanoma , Nanogéis , Sistemas de Liberação de Fármacos por Nanopartículas , Óleo de Palmeira , Resveratrol , Resveratrol/administração & dosagem , Melanoma/terapia , Humanos , Linhagem Celular Tumoral , Nanogéis/administração & dosagem , Nanogéis/química , Arecaceae/química , Óleo de Palmeira/química , Sementes/química , Tamanho da Partícula , Antineoplásicos/administração & dosagem , Antineoplásicos/química
6.
Nutrients ; 15(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839349

RESUMO

The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.


Assuntos
Arecaceae , Euterpe , Euterpe/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Arecaceae/química , Dieta , Frutas/química
7.
Nat Prod Res ; 37(5): 793-797, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35671367

RESUMO

'Tucum-do-cerrado' (Bactris setosa) is an edible fruit from the Brazilian 'Cerrado' biome marked by a high antioxidant potential and polyphenol content when compared to other fruits from the same biome. Its antioxidant activity is higher in the peel than in the pulp. Ethanolic and aqueous peel extracts were analyzed by the ferric reducing antioxidant power (FRAP) assay. We also investigated the aqueous peel extract for its antioxidant mechanism and isolated some of its compounds using high-performance liquid chromatography. Among the extracts tested, the aqueous peel extract exhibited the highest FRAP values, with a predominant free radical scavenger activity. The isolated compounds were identified as two catechins, a cyanidin, a peonidin, and a quercetin. Testing the antioxidant potential of the isolated compounds using the 2-deoxyribose degradation assay revealed that catechin and quercetin showed the highest antioxidant activity. Thus, our results advance the identification of 'tucum-do-cerrado' compounds with antioxidant activity.


Assuntos
Antioxidantes , Arecaceae , Antioxidantes/química , Frutas/química , Quercetina/análise , Extratos Vegetais/química , Água/análise , Arecaceae/química
8.
Sensors (Basel) ; 22(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146439

RESUMO

The degree of maturity of oil palm fresh fruit bunches (FFB) at the time of harvest heavily affects oil production, which is expressed in the oil extraction rate (OER). Oil palm harvests must be harvested at their optimum maturity to maximize oil yield if a rapid, non-intrusive, and accurate method is available to determine their level of maturity. This study demonstrates the potential of implementing Raman spectroscopy for determining the maturity of oil palm fruitlets. A ripeness classification algorithm has been developed utilizing machine learning by classifying the components of organic compounds such as ß-carotene, amino acid, etc. as parameters to distinguish the ripeness of fruits. In this study, 47 oil palm fruitlets spectra from three different ripeness levels-under ripe, ripe, and over ripe-were examined. To classify the oil palm fruitlets into three maturity categories, the extracted features were put to the test using 31 machine learning models. It was discovered that the Medium, Weighted KNN, and Trilayered Neural Network classifier has a maximum overall accuracy of 90.9% by using four significant features extracted from the peaks as the predictors. To conclude, the Raman spectroscopy method may offer a precise and efficient means to evaluate the maturity level of oil palm fruitlets.


Assuntos
Arecaceae , Aminoácidos/análise , Arecaceae/química , Correlação de Dados , Frutas/química , Compostos Orgânicos , Óleo de Palmeira/análise , beta Caroteno/análise
9.
Nutrients ; 14(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35745276

RESUMO

Mauritia flexuosa (Buriti) pulp oil contains bioactive substances and lipids that are protective against cardiovascular and inflammatory diseases. We performed physical and chemical analyses to verify its quality and stability. Buriti oil was stable according to the Rancimat test, presenting an induction period of 6.6 h. We evaluated the effect of supplementation with crude buriti oil and olive oil on metabolic parameters in 108 Swiss mice for 90 days. We investigated six groups: extra virgin olive oil (EVOO) 1 and 2 (1000 and 2000 mg/kg), buriti oil (BO) 1 and 2 (1000 and 2000 mg/kg), synergic (S) (BO1 + EVOO1), and control (water dose 1000 mg/kg). The animals were euthanized to examine their blood, livers, and fats. The supplementation did not interfere with food consumption, weight gain, and histological alterations in the liver. Group S showed the strongest relationship with the fractions HDL-c and non-HDL-c, indicating a possible cardioprotective effect. Moreover, we observed significantly higher IL-6 levels in the control, EVOO2, and BO1 groups than in the EVOO1 group. Resistin was also significantly higher for the synergic treatment than for the control. We conclude that BO combined with EVOO could be an excellent food supplement for human consumption.


Assuntos
Arecaceae , Animais , Arecaceae/química , Suplementos Nutricionais , Fígado/metabolismo , Camundongos , Modelos Teóricos , Azeite de Oliva/metabolismo , Óleos de Plantas/química
10.
Molecules ; 27(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630543

RESUMO

Plant polyphenols offer several benefits for the prevention of diverse illnesses. Fruit's edible and inedible parts (pulp, seeds, peels, stems, flowers) are important sources of polyphenols. Different industrial processes for fruit treatment and commercialization affect the total polyphenol content (TPC), and probably the biological activity. The purpose of the present work was to determine the TPC and antioxidant activity (by DPPH) of polyphenols extracted from the pulp and seeds of Mauritia flexuosa (aguaje), in fresh and dehydrated forms, in order to determine the possible connection with the quantity of polyphenols and their specific antioxidant activity. The highest phenolic content for M. flexuosa seeds in fresh form (non-dehydrated) was 270.75 mg GAE/100 g with a 96-h extraction. With respect to the dehydrated samples, the best yield was quantified in the 96-h dehydrated seed sample. For all pulp and seeds, dehydrated for 24, 48, and 96 h, TPC showed a slightly decreasing pattern. The DPPH results were the highest in the 96-h dehydrated samples and the differences among all dehydrated pulp and seed samples were minimal. More studies testing the presence of other antioxidant components could help in understanding the detailed antioxidant activity, and related more to the specific action, rather than only total polyphenol content.


Assuntos
Arecaceae , Polifenóis , Antioxidantes/química , Arecaceae/química , Desidratação , Frutas/química , Polifenóis/química
11.
J Sci Food Agric ; 102(1): 233-240, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081335

RESUMO

BACKGROUND: The oil palm tree produces 90% of wastes and the limited usage of these wastes causes a major disposal problem in the mills. Nevertheless, these by-products have a large amount of nutritional components. Thus, the present study aimed to determine the physicochemical and functional properties of protein hydrolysates (PH) from oil palm leaves (OPL) extracted using different concentrations of Alcalase (0-10%) at 2 h of hydrolysis time. RESULTS: Fourier transform infrared spectral analyses showed that the enzymatic hydrolysis altered functional groups of OPL where a secondary amine was present in the PH. Changes were also observed in the thermal stability where the enthalpy heat obtained for PH (933.93-1142.57 J g-1 ) was much lower than OPL (7854.11 J g-1 ). The results showed that the PH extracted by 8% Alcalase exhibited absolute zeta potential, as well as a high emulsifying activity index (70.64 m2  g-1 of protein) and emulsion stability index (60.58 min). Furthermore, this PH showed higher solubility (96.32%) and emulsifying properties compared to other PHs. It is also comparable with commercial plant proteins, indicating that 8% Alcalase is an optimum concentration for hydrolysis. CONCLUSION: In summary, the physicochemical and functional properties of PH extracted from OPL showed good functional properties, suggesting that it can be used as an alternative plant protein in food industries. © 2021 Society of Chemical Industry.


Assuntos
Arecaceae/química , Folhas de Planta/química , Proteínas de Plantas/química , Biocatálise , Emulsões/química , Concentração de Íons de Hidrogênio , Hidrólise , Peso Molecular , Proteínas de Plantas/isolamento & purificação , Hidrolisados de Proteína/química , Hidrolisados de Proteína/isolamento & purificação , Solubilidade , Subtilisinas/química
12.
Sci Rep ; 11(1): 20851, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675286

RESUMO

Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.


Assuntos
Arecaceae/química , Emulsões/química , Extratos Vegetais/química , Folhas de Planta/química , Água/química , Administração Cutânea , Emulsões/administração & dosagem , Emulsões/farmacocinética , Humanos , Modelos Moleculares , Permeabilidade , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética , Pele/metabolismo , Absorção Cutânea , Termodinâmica
13.
Oxid Med Cell Longev ; 2021: 7807046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707780

RESUMO

In this study, a chemical investigation on the fruits of Livistona chinensis (FLC) led to the isolation and identification of 45 polyphenols and 5 alkaloids, including two new compounds (Livischinol (1) and Livischinine A (46)), an undescribed compound (47) and 47 known compounds. FLC was predicted with novel potential antidiabetic function by collecting and analyzing the potential targets of the ingredients. Compound 32 exhibited significant α-glucosidase inhibitory activity (IC50 = 5.71 µM) and 1, 6, and 44 showed the PTP1B inhibitory activity with IC50 values of 9.41-22.19 µM, while that of oleanolic acid was 28.58 µM. The competitive inhibitors of PTP1B (compounds 1 and 44) formed strong binding affinity, with catalytic active sites, proved by kinetic analysis, fluorescence spectra measurements, and computational simulations, and stimulated glucose uptake in the insulin-resistant HepG2 cells at the dose of 50 µM. In addition, FLC was rich in antioxidant and anti-inflammatory bioactive compounds so that they could be developed as nutraceuticals against diabetes.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Arecaceae , Frutas , Inibidores de Glicosídeo Hidrolases/farmacologia , Farmacologia em Rede , Extratos Vegetais/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Arecaceae/química , Frutas/química , Glucose/metabolismo , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Resistência à Insulina , Cinética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Extratos Vegetais/isolamento & purificação , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Células RAW 264.7
14.
Nutrients ; 13(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445015

RESUMO

Oxidative stress is involved in the metabolic dysregulation of type 2 diabetes (DM2). Acrocomia aculeata (Aa) fruit pulp has been described for the treatment of several diseases, and recently we have proved that its leaves have phenolic compounds with a marked antioxidant effect. We aimed to assess whether they can improve metabolic, redox and vascular functions in DM2. Control Wistar (W-Ctrl) and non-obese type 2 diabetic Goto-Kakizaki (GK-Ctrl) rats were treated for 30 days with 200 mg.kg-1 aqueous extract of Aa (EA-Aa) (Wistar, W-EA-Aa/GK, GK-EA-Aa). EA-Aa was able to reduce fasting glycaemia and triglycerides of GK-EA-Aa by improving proteins related to glucose and lipid metabolism, such as GLUT-4, PPARγ, AMPK, and IR, when compared to GK-Ctrl. It also improved viability of 3T3-L1 pre-adipocytes exposed by H2O2. EA-Aa also increased the levels of catalase in the aorta and kidney, reduced oxidative stress and increased relaxation of the aorta in GK-treated rats in relation to GK-Ctrl, in addition to the protective effect against oxidative stress in HMVec-D cells. We proved the direct antioxidant potential of the chemical compounds of EA-Aa, the increase in antioxidant defences in a tissue-specific manner and hypoglycaemic properties, improving vascular function in type 2 diabetes. EA-Aa and its constituents may have a therapeutic potential for the treatment of DM2 complications.


Assuntos
Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Arecaceae , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Hipoglicemiantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Vasodilatação/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Antioxidantes/isolamento & purificação , Aorta/metabolismo , Aorta/fisiopatologia , Arecaceae/química , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Frutas , Humanos , Hipoglicemiantes/isolamento & purificação , Lipídeos/sangue , Masculino , Camundongos , Extratos Vegetais/isolamento & purificação , Ratos Wistar
15.
Molecules ; 26(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063074

RESUMO

The aim of this study was to characterize the phytochemical content as well as the antioxidant ability of the Moroccan species Chamaerops humilis L. Besides crude ethanolic extract, two extracts obtained by sonication using two solvents with increased polarity, namely ethyl acetate (EtOAc) and methanol-water (MeOH-H2O) 80:20 (v/v), were investigated by both spectroscopy and chromatography methods. Between the two extracts, the MeOH-H2O one showed the highest total polyphenolic content equal to 32.7 ± 0.1 mg GAE/g DM with respect to the EtOAc extract (3.6 ± 0.5 mg GAE/g DM). Concerning the antioxidant activity of the two extracts, the EtOAc one yielded the highest value (1.9 ± 0.1 mg/mL) with respect to MeOH-H2O (0.4 ± 0.1 mg/mL). The C. humilisn-hexane fraction, analyzed by GC-MS, exhibited 69 compounds belonging to different chemical classes, with n-Hexadecanoic acid as a major compound (21.75%), whereas the polyphenolic profile, elucidated by HPLC-PDA/MS, led to the identification of a total of sixteen and thirteen different compounds in both EtOAc (major component: ferulic acid: 104.7 ± 2.52 µg/g) and MeOH-H2O extracts (major component: chlorogenic acid: 45.4 ± 1.59 µg/g), respectively. The attained results clearly highlight the potential of C. humilis as an important source of bioactive components, making it a valuable candidate to be advantageously added to the daily diet. Furthermore, this study provides the scientific basis for the exploitation of the Doum in the food, pharmaceutical and nutraceutical industries.


Assuntos
Antioxidantes/análise , Arecaceae/química , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Compostos Fitoquímicos/análise , Polifenóis/análise
16.
Nat Prod Res ; 35(12): 2060-2065, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34096432

RESUMO

In this work was to develop an inedited nanocapsule with tucumã oil (Astrocaryum vulgare). The oil presents of phytosterols (squalene and ß-sitosterol), all-trans-beta-carotene, acids oleic and palmitic. Antioxidant activity showed a good performance in DPPH and ABTS assays. The nanocapsules were prepared and demonstrated in their characterization particle size (206 ± 0.69 nm). The cytogenotoxicity evaluation was performed using the MTT, dichlorofluorescein, nitric oxide and dsDNA PicoGreen® assays. Antitumor efficacy assays in MCF-7 cells demonstrated that free oil and tucumã nanocapsules had IC50 of 130 and 50 µg/mL, respectively. Thus, previous studies of toxicity are relevant, as they generate future subsidies, aiming at the potential application of nanostructures and in addition, the promising effect of NCs of tucumã oil on the antiproliferative effect in breast adenocarcinoma cells was evidenced.


Assuntos
Antioxidantes/farmacologia , Arecaceae/química , Nanocápsulas/química , Compostos Fitoquímicos/farmacologia , Óleos de Plantas/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/análise , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Tamanho da Partícula , Compostos Fitoquímicos/análise , Fitosteróis/análise , Óleos de Plantas/química
17.
Bioprocess Biosyst Eng ; 44(10): 2141-2151, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34037849

RESUMO

In the present study, we demonstrated the use of molecular docking as an efficient in silico screening tool for lipase-triglyceride interactions. Computational simulations using the crystal structures from Burkholderia cepacia lipase (BCL), Thermomyces lanuginosus lipase (TLL), and pancreatic porcine lipase (PPL) were performed to elucidate the catalytic behavior with the majority triglycerides present in Licuri oil, as follows: caprilyl-dilauryl-glycerol (CyLaLa), capryl-dilauryl-glycerol (CaLaLa), capryl-lauryl-myristoyl-glycerol (CaLaM), and dilauryl-myristoyl-glycerol (LaLaM). The computational simulation results showed that BCL has the potential to preferentially catalyze the major triglycerides present in Licuri oil, demonstrating that CyLaLa, (≈25.75% oil composition) interacts directly with two of the three amino acid residues in its catalytic triad (Ser87 and His286) with the lowest energy (-5.9 kcal/mol), while other triglycerides (CaLaLa, CaLaM, and LaLaM) interact with only one amino acid (His286). In one hard, TLL showed a preference for catalyzing the triglyceride CaLaLa also interacting with His286 residue, but, achieving higher binding energies (-5.3 kcal/mol) than found in BCL (-5.7 kcal/mol). On the other hand, PPL prefers to catalyze only with LaLaM triglyceride by His264 residue interaction. When comparing the computational simulations with the experimental results, it was possible to understand how BCL and TLL display more stable binding with the majority triglycerides present in the Licuri oil, achieving conversions of 50.86 and 49.01%, respectively. These results indicate the production of fatty acid concentrates from Licuri oil with high lauric acid content. Meanwhile, this study also demonstrates the application of molecular docking as an important tool for lipase screening to reach a more sustainable production of fatty acid concentrates from vegetable oils.


Assuntos
Arecaceae/química , Biologia Computacional/métodos , Lipase/metabolismo , Óleos de Plantas/química , Triglicerídeos/metabolismo , Animais , Burkholderia cepacia/enzimologia , Catálise , Eurotiales/enzimologia , Especificidade por Substrato , Suínos , Termodinâmica
18.
Acta Sci Pol Technol Aliment ; 20(2): 189-196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33884856

RESUMO

BACKGROUND: Bacaba (Oenocarpus bacaba Mart.) has a high yield of oil, with the potential to produce biologically active natural products and can be considered a new "superfruit" with high value added. METHODS: Acid value, peroxide value, refractive index, saponification value, p-anisidine value, relative density, iodine value, total oxidation value, specific extinction coefficients at 232 and 270 nm (K232 and K270), ΔK, and color were determined. RESULTS: The most significant changes in the quality values, such as peroxide (26.25 mEq·kg-1), p-anisidine (11.41), acidity (14.66 mg KOH·g-1 oil), and total oxidation (63.92) were determined for 15 min of microwave heating. CONCLUSIONS: The microwave heating promoted the acceleration of oxidative processes showing that, overall, much care should be taken when heating the bacaba oil by microwave to avoid oil degradation.


Assuntos
Arecaceae/química , Culinária/métodos , Frutas/química , Temperatura Alta , Micro-Ondas , Óleos de Plantas/química , Ácidos/análise , Cor , Iodo/análise , Peroxidação de Lipídeos , Oxirredução , Peróxidos/análise
19.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669484

RESUMO

Luteolin and apigenin derivatives present in oil palm (Elaeis guineensis) leaves (OPL) are reported to possess excellent antioxidant properties relating to numerous health benefits. To meet the global demand for flavonoids, OPL, which is plentifully generated as an agricultural by-product from oil palm plantations, can be further exploited as a new source of natural antioxidant compounds. However, to produce a standardized herbal preparation, validation of the quantification method for these compounds is required. Therefore, in this investigation, we developed and validated an improved and rapid analytical method, ultra-high-performance liquid chromatography equipped with ultraviolet/photodiode array (UHPLC-UV/PDA) for the quantification of 12 luteolin and apigenin derivatives, particularly focusing on flavonoid isomeric pairs: orientin/isoorientin and vitexin/isovitexin, present in various OPL extracts. Several validation parameters were assessed, resulting in the UHPLC-UV/PDA technique offering good specificity, linearity, accuracy, precision, and robustness, where the values were within acceptable limits. Subsequently, the validated method was employed to quantify luteolin and apigenin derivatives from OPL subjected to different drying treatments and extraction with various solvent systems, giving total luteolin (TLC) and apigenin content (TAC) in the range of 2.04-56.30 and 1.84-160.38 µg/mg extract, respectively. Additionally, partial least square (PLS) analysis disclosed the combination of freeze dry-aqueous methanol yielded OPL extracts with high TLC and TAC, which are strongly correlated with antioxidant activity. Therefore, we provide the first validation report of the UHPLC-UV/PDA method for quantification of luteolin and apigenin derivatives present in various OPL extracts, suggesting that this approach could be employed in standardized herbal preparations by adopting orientin, isoorientin, vitexin, and isovitexin as chemical markers.


Assuntos
Antioxidantes/análise , Apigenina/análise , Arecaceae/química , Cromatografia Líquida de Alta Pressão/métodos , Luteolina/análise , Extratos Vegetais/química , Apigenina/química , Dessecação , Análise dos Mínimos Quadrados , Limite de Detecção , Luteolina/química , Polifenóis/análise , Solventes/química
20.
Food Chem ; 351: 129314, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33647696

RESUMO

A method for early quantification of unripe macaw fruits oil content using near-infrared spectroscopy (NIR) and partial least squares (PLS) is presented. After harvest, the fruit takes about 30 days to reach its maximum oil accumulation. The oil content was quantified thirty days after harvest using Soxhlet extraction. PLS models were built using NIR spectra of shell obtained five days after harvest (Shell5). The Shell5 model was compared with models built using NIR spectra of the shell (Shell30) and mesocarp thirty days after harvest (Pulp30). Ordered predictors selection was used to select the most informative variables. The best models presented root mean square error of prediction and correlation coefficient of prediction of 4.87% and 0.89 for Shell5; 5.83% and 0.85 for Shell30; 4.76% and 0.92 for Pulp30. Thus, the anticipated prediction of oil content could reduce the time and costs of macaw palm quality control and storage.


Assuntos
Arecaceae/química , Frutas/química , Óleos de Plantas/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA